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Abstract
In this paper, we compare the classical conservative properties of five difference
schemes applied to the coupled Klein–Gordon–Schrödinger equations in
quantum physics, and investigate the numerical behaviour of the schemes
in the implementation. Numerical results reveal merits and shortcomings
of the schemes, and show that all five schemes are stable in the classical
conservation laws. In the sense of preservation of classical conservative
properties, conservative schemes are better than others.

PACS numbers: 02.60.Jh, 02.60.Lj, 45.20.Jj

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In this paper, we consider the standard coupled Klein–Gordon–Schrödinger (CKGS) equations


i∂tϕ +

1

2
∂xxϕ + uϕ = 0,

∂ttu − ∂xxu + u − |ϕ|2 = 0,

(1.1)
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where ϕ(x, t) denotes a complex scalar nucleon field and u(x, t) denotes a real scalar meson
field, respectively. Moreover, i = √−1, and we denote the spatial and temporal direction
by (x, t), and x ∈ R, t � 0. We supplement (1.1) by prescribing the initial-boundary value
conditions for ϕ(x, t) and u(x, t) with

ϕ|t=0 = ϕ0(x), u|t=0 = u0(x), ut |t=0 = u1(x),

lim
|x|→∞

|ϕ(x, t)| = 0, lim
|x|→∞

u(x, t) = 0,
(1.2)

where ϕ0(x), u0(x) and u1(x) are given initial values.
The CKGS equations (1.1)–(1.2) are classical models to describe the interaction between

a conservative complex neutron field and a neutral meson Yukawa in the quantum field theory.
Theoretical results concerning it can be found in the literature [2, 4, 5] and some numerical
methods have been proposed in [1, 3, 6]. The purpose of this paper is to investigate numerically
five difference schemes applied to the CKGS equations, especially to compare the preservation
of classical conservation laws in numerical implementation.

The outline of the paper is as follows. We review some properties of the CKGS equations
in section 2. Some numerical methods are also presented in this section. Then conservation
laws are simply investigated in section 3. Finally, some numerical experiments are shown
in section 4, and some interesting numerical phenomena are also discovered in this section.
Finally, we draw some conclusions to end the paper.

2. Invariants and numerical methods for the CKGS equations

We review some properties of the CKGS equations (1.1) in the section, including charge
conservation law, energy conservation law, momentum conservation law and mean value
conservation law. Various difference schemes which are all of second order both in time and
space are also constructed in this section.

The invariants follow along with the CKGS equations.

(I) Charge conservation law

C(t) :=
∫
R

|ϕ(x, t)|2 dx =
∫
R

|ϕ0(x)| := C(0), t � 0. (2.1)

(II) Energy conservation law

E(t) :=
∫
R
(u(x, t)2 + ut (x, t)2 + ux(x, t)2 + |ϕx(x, t)|2) − 2u(x, t)|ϕ(x, t)|2 dx

=
∫
R
(u(x, 0)2 + ut (x, 0)2 + ux(x, 0)2 + |ϕx(x, 0)|2)

− 2u(x, 0)|ϕ(x, 0)|2 dx := E(0). (2.2)

(III) Momentum conservation law

M(t) :=
∫
R
Im(ϕ(x, t)ϕx(x, t)) − ut (x, t)ux(x, t) dx

=
∫
R
Im(ϕ(x, 0)ϕx(x, 0)) − ut (x, 0)ux(x, 0) dx = M(0), (2.3)

where ‘Im’ denotes the imaginary part, and ϕ denotes the complex conjugate of ϕ.
(IV) Mean value conservation law

N(t) = C(0) + (Ñ(u0) − C(0)) cos(t) + Ñ(u1) sin(t) = N(0), (2.4)

where N(t) := Ñ(u(·, t)) = ∫
R u(x, t) dx.
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These are formal invariants of the CKGS equations. Naturally, the most interesting thing
is to search for effective schemes to preserve these formal invariants as much as possible. Thus,
it motivates us to investigate their various numerical schemes, and compare their numerical
results. We list five difference schemes for the CKGS equations and compare their numerical
phenomena.

We choose h and τ as the spatial mesh grid size and the temporal step size, respectively.
For convenience, we introduce a uniform grid (xj , tk) ∈ R × R+. The approximation of the
value of the function V (x, t) at the mesh grid (xj , tk) is denoted by V k

j . The concrete schemes
are the following.

Scheme (M-M). This is constructed by applying the implicit midpoint method to both
directions of equations in [3]

i
(
δtϕ

n+1/2
j+1/2 + δtϕ

n+1/2
j−1/2

)
+ δ2

xϕ
n+1/2
j +

(
ϕ

n+1/2
j+1/2u

n+1/2
j+1/2 + ϕ

n+1/2
j−1/2u

n+1/2
j−1/2

) = 0,(
δ2
t u

n
j+1/2 + δ2

t u
n
j−1/2

) − (
δ2
xu

n+1/2
j + δ2

xu
n−1/2
j

)
+ 1

2

(
u

n+1/2
j+1/2 + u

n+1/2
j−1/2 + u

n−1/2
j+1/2

+ u
n−1/2
j−1/2

) − 1
2

(∣∣ϕn+1/2
j+1/2

∣∣2
+

∣∣ϕn+1/2
j−1/2

∣∣2
+

∣∣ϕn−1/2
j+1/2

∣∣2
+ |ϕn−1/2

j−1/2 |2
) = 0,

where ϕ
n+1/2
j+1/2 = 1

2

(
ϕn+1

j+1/2 + ϕn
j+1/2

) = 1
2

(
ϕ

n+1/2
j+1 + ϕ

n+1/2
j

) = 1
4

(
ϕn+1

j+1 + ϕn
j+1 + ϕ

j

n+1 +

ϕn
j

)
, δtϕ

n+1/2
j+1/2 = ϕn+1

j+1/2−ϕn
j+1/2

τ
, δ2

t u
n
j+1/2 = un+1

j+1/2−2un
j+1/2+un−1

j+1/2

τ 2 , δ2
xu

n+1/2
j = u

n+1/2
j+1 −2u

n+1/2
j +u

n+1/2
j−1

h2 ,
etc. This scheme was proved to be multisymplectic [3].
Scheme (M-C). This applies the implicit midpoint method to the t-direction and central
difference method to the x-direction:

iδtϕ
n+1/2
j + 1

4

(
δ2
xϕ

n+1
j + δ2

xϕ
n
j

)
+ u

n+1/2
j ϕ

n+1/2
j = 0,

δ2
t u

n
j − 1

4

(
δ2
xu

n−1
j + 2δ2

xu
n
j + δ2

xu
n+1
j

)
+ 1

2

(
u

n−1/2
j + u

n+1/2
j

) − 1
2

(∣∣ϕn−1/2
j

∣∣2
+

∣∣ϕn+1/2
j

∣∣2) = 0.

Scheme (T-C). This is constructed by applying the trapezoidal method to the t-direction
and central difference method to the x-direction:

iδtϕ
n+1/2
j + 1

4

(
δ2
xϕ

n+1
j + δ2

xϕ
n
j

)
+ 1

2

(
un+1

j ϕn+1
j + un

jϕ
n
j

) = 0,

δ2
t u

n
j − 1

2

(
δ2
xu

n−1/2
j + δ2
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n+1/2
j

)
+ 1

2

(
u
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j + u

n+1/2
j

) − 1
4
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j

∣∣2
+ 2

∣∣ϕn
j

∣∣2
+

∣∣ϕn−1
j

∣∣2) = 0.

Scheme (T-T). This is constructed by applying the trapezoidal method to both directions
of equations

i
(
δtϕ

n+1/2
j+1 + 2δtϕ

n+1/2
j + δtϕ

n+1/2
j−1

)
+

(
δ2
xϕ

n+1
j + δ2

xϕ
n
j

)
+ 1

2

(
un+1

j+1ϕ
n+1
j+1 + 2un+1

j ϕn+1
j + un+1

j−1ϕ
n+1
j−1 + un

j+1ϕ
n
j+1 + 2un

jϕ
n
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j−1ϕ
n
j−1

) = 0,(
δ2
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n
j+1 + δ2

t u
n
j + δ2

t u
n
j−1

) − (
δ2
xu

n+1
j + δ2
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n
j + δ2
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n−1
j

)
+ (u

n+1/2
j+1/2 + u

n−1/2
j+1/2

+ u
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n−1/2
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4

[∣∣ϕn+1
j+1

∣∣2
+ 2

∣∣ϕn+1
j

∣∣2
+

∣∣ϕn+1
j−1

∣∣2
+ 2

(∣∣ϕn
j+1

∣∣2
+ 2

∣∣ϕn
j

∣∣2

+
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j−1

∣∣2)
+
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j+1

∣∣2
+ 2

∣∣ϕn−1
j

∣∣2
+
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∣∣2] = 0.

Conservative scheme (C-C). This was proposed by Zhang [6]:

iδϕn+1/2
j + 1

4

(
δ2
xϕ

n+1
j + δ2

xϕ
n
j

)
+ 1

4

(
un

j + un+1
j

)(
ϕn

j + ϕn+1
j

) = 0,

δ2
xu

n
j − δ2

xu
n
j + 1

2

(
un+1

j + un−1
j

) − |ϕn
j |2 = 0.

We would like to emphasize here that all the five schemes are implicit since all of
them, applied to the nonlinear equations, need iterative process from time tk to tk+1, and the
differences among the schemes (M-M), (T-T), (M-C) and (T-C) are in the discretization of the
nonlinear terms.

In the subsequent section, we investigate the discrete conservative quantities of the five
difference schemes.
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3. Discrete conservation laws of the difference schemes

In this section, we study the discrete conservation laws of the difference schemes presented in
the previous section.

Lemma 3.1. Both schemes (C-C) and (T-C) possess the discrete charge conservation law, i.e.,

h
∑

j

∣∣ϕk
j

∣∣2 = h
∑

j

∣∣ϕ0
j

∣∣2
, (3.1)

where ϕ0
j = ϕ0(xj ) is the initial value.

We refer to [6] for the proof of this lemma.

Lemma 3.2 ([3]). The scheme (M-M) admits the discrete charge conservation law, i.e.

h
∑

j

∣∣∣∣∣ϕ
k
j + ϕk

j+1

2

∣∣∣∣∣
2

= h
∑

j

∣∣∣∣∣ϕ
0
j + ϕ0

j+1

2

∣∣∣∣∣
2

. (3.2)

Lemma 3.3 ([6]). The scheme (C-C) satisfies the discrete energy conservation law in the
following sense:

En = En−1 = · · · = E0, (3.3)

where

En = h
∑

j

∣∣∣∣∣ϕ
n+1
j+1 − ϕn+1

j

h

∣∣∣∣∣
2

+ h
∑

j

∣∣∣∣∣u
n+1
j − un

j

τ

∣∣∣∣∣
2

+ h
∑

j

un
j+1 − un

j

h

un+1
j+1 − un+1

j

h

+
1

2
h

∑
j

(∣∣un+1
j

∣∣2
+

∣∣un
j

∣∣2) − h
∑

j

(
un+1

j + un
j

)∣∣ϕn+1
j

∣∣2
,

which is an approximation of the energy conservation law (2.2).

The other four schemes cannot preserve the discrete energy conservation laws exactly. But
we can investigate their residuals numerically. Furthermore, the truncation errors of the above
five schemes reach O(τ 2 + h2), which can be easily verified by Taylor expansion.

4. Numerical experiments

In this section, we carry out some numerical experiments to observe the numerical phenomena
by using the five difference schemes presented in the previous section.

For the convenience of comparisons, we give some solitary-wave solutions of the CKGS
equations (1.1),


ϕ(x, t, q) = 3
√

2

4
√

1 − q2
sech2 1

2
√

1 − q2
(x − qt − x0) exp

(
i

(
qx +

1 − q2 + q4

2(1 − q2)
t

))
,

u(x, t, q) = 3

4(1 − q2)
sech2 1

2
√

1 − q2
(x − qt − x0),

(4.1)

where q (0 � |q| < 1) indicates the propagating velocity of wave, x0 is the initial phase.
The initial values

ϕ0(x) = ϕ(x, 0, q), u0(x) = u(x, 0, q), v0(x) = ut (x, t, q)|t=0

are obtained from (4.1) as t = 0.
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Table 1. Errors between numerical solutions and analytic solutions.

τ \ h method L∞ error of u L2 error of u L∞ error of ϕ L2 error of ϕ

0.1\0.2 M-M 3.404 209 ×10−4 3.341 671 ×10−3 5.032 287 ×10−3 6.402 466 ×10−3

M-C 8.853 035 ×10−4 1.271 846 ×10−3 1.964 584 ×10−3 3.053 696 ×10−3

T-C 1.196 352 ×10−3 1.366 835 ×10−3 2.059 972 ×10−3 3.174 964 ×10−3

T-T 1.477 323 ×10−3 2.750 816 ×10−3 4.483 451 ×10−3 6.540 302 ×10−3

C-C 1.258 607 ×10−3 1.424 779 ×10−3 2.078 082 ×10−3 3.134 800 ×10−3

0.05\0.1 M-M 9.515 770 ×10−5 8.840 607 ×10−4 1.335 464 ×10−3 1.693 839 ×10−3

M-C 2.350 719 ×10−4 3.387 470 ×10−4 5.078 567 ×10−4 8.004 568 ×10−4

T-C 3.163 652 ×10−4 3.636 545 ×10−4 5.341 095 ×10−4 8.328 130 ×10−4

T-T 3.911 607 ×10−4 7.221 917 ×10−4 1.178 744 ×10−3 1.701 153 ×10−3

C-C 3.325 115 ×10−4 3.784 952 ×10−4 5.392 754 ×10−4 8.222 223 ×10−4

0.025\0.05 M-M 2.500 168 ×10−5 2.269 768 ×10−4 3.420 941 ×10−4 4.347 211 ×10−4

M-C 6.063 758 ×10−5 8.729 277 ×10−5 1.292 030 ×10−4 2.045 860 ×10−4

T-C 8.134 725 ×10−5 9.368 392 ×10−5 1.358 407 ×10−4 2.129 327 ×10−4

T-T 1.011 365 ×10−4 1.854 060 ×10−4 3.002 562 ×10−4 4.341 851 ×10−4

C-C 8.563 031 ×10−5 9.742 859 ×10−5 1.371 329 ×10−4 2.102 248 ×10−4

4.1. Solitary wave tests

In order to process numerical investigations, we choose x0 = −20, q = 0.3, set the spatial
domain [−L,L] and the zero boundary conditions

ϕ(−L, t) = ϕ(L, t) = 0, u(−L, t) = u(L, t) = 0.

During the subsequent practical computation, we choose L = 40.
Furthermore, errors between numerical solutions and analytic solutions in sense of L2

and L∞ norms are, respectively, defined as

∥∥errornϕ
∥∥

2 =

h

∑
j

|ϕ(xj , tn) − ϕn
j |2




1
2

,
∥∥errornϕ

∥∥
∞ = max

j

∣∣ϕ(xj , tn) − ϕn
j big|.

(4.2)

Table 1 shows errors for the five difference schemes at T = 1. From the two tables, we
can conclude numerically that the numerical results are consistent with the theoretical ones
that the numerical solutions u, ϕ are of order O(τ 2 + h2).

The corresponding approximations of (2.1), (2.2) and (2.3) at t = tn are denoted by
Cn,En and Mn, respectively, and the residual of the charge at tn is given by Cn − C0, so do
the energy and momentum.

For the purpose of illustrations and comparisons, we give their numerical behaviour in
the time interval [0, 100] with various temporal and spatial step-sizes. The numerical results
are presented in figures 1–3.

Figure 1 presents the residuals of energy En. Except for scheme (C-C) preserving the
energy conservation law exactly in the scale of 10−12, all the other four schemes exhibit
the similar changes: the residuals are reduced to about 1

16 roughly, as both the spatial mesh
grid size and the temporal step size are reduced to 1

2 simultaneously. And all graphs show
oscillation of small amplitude, and no evident fluctuation for a long time. But scheme (T-T)
is inferior to the others.

Figure 2 shows the residuals of momentum Mn. All the five schemes cannot preserve
the momentum conservation law exactly. Schemes (M-M) and (T-T) exhibit analogous
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Figure 1. Residuals of energy conservation law with various spatial and temporal step sizes. Left
for τ = 0.1 and h = 0.2; mid for τ = 0.05 and h = 0.1; right for τ = 0.025 and h = 0.05; for
(a) scheme M-M, (b) scheme M-C, (c) scheme T-C, (d) scheme T-T, (e) scheme C-C.
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Figure 2. Residuals of momentum conservation law with various spatial and temporal step sizes.
Left for τ = 0.1 and h = 0.2; mid for τ = 0.05 and h = 0.1; right for τ = 0.025 and h = 0.05;
for (a) scheme M-M, (b) scheme M-C, (c) scheme T-C, (d) scheme T-T, (e) scheme C-C.
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Figure 3. Residuals of charge conservation law with various spatial and temporal step sizes. Left
for τ = 0.1 and h = 0.2; mid for τ = 0.05 and h = 0.1; right for τ = 0.025 and h = 0.05; for
(a) scheme M-M, (b) scheme M-C, (c) scheme T-C, (d) scheme T-T, (e) scheme C-C.
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Figure 4. numerical solutions of symmetric collision for scheme (M-M). Left for u, right for |ϕ|.

performance along with the increase of time, and the errors are reduced to about 1
16 roughly,

as both of the spatial mesh grid size and the temporal step size are reduced to 1
2 . Schemes

(M-C), (T-C) and (C-C) exhibit analogous performance likewise, they have the similar scope
of errors.

Figure 3 displays the residuals of charge Cn. We can observe that schemes (M-M), (M-C)
and (C-C) all preserve the charge conservation law exactly, which are all in the magnitude of
10−12. These are consistent with the theoretical results in lemma 3.1 and lemma 3.2. Though
schemes (T-C) and (T-T) cannot preserve the charge conservation law exactly, they remain the
errors in good magnitudes and have no evident increase for a long time with different mesh
grid sizes and time step sizes. Moreover, the residuals are in accordance with the rule that
they are increased to about 16 times roughly, as both the mesh grid size and the time step size
are densified two times.

It can be seen from the experiments that in the case of solitary-wave solutions, all the five
schemes are stable in the sense of the energy, charge and momentum conservation laws.

4.2. Collision of solitons

Now, we turn our attentions to the collision of two solitons. The corresponding initial values
are chosen as follows:

ϕ0(x) = ϕ0(x − x1, 0, q1) + ϕ0(x − x2, 0, q2),

u0(x) = u0(x − x1, 0, q1) + u0(x − x2, 0, q2),

v0(x) = {ut (x − x1, t, q1) + ut (x − x2, t, q2)}|t=0,

where x1, x2 are initial phases and q1, q2 are propagating velocities of two solitons, respectively.
We choose collision of two solitons with identical speeds and opposite directions

(symmetric collision): x1 = −15, x2 = 15 and q1 = 0.6, q2 = −0.6, respectively. We
solve the problem with the five schemes in the spatial domain [−40, 40] till T = 50. In this
case, we take τ = 0.01 and h = 0.2.

Figure 4 shows the evolution of the solitons calculated by scheme (M-M) as an example.
We can find that the two solitons stay at the same position at time around t = 22.5, and the
solitons keep in this state. After that, the collision results in fusion accompanied by a series
of emission of waves.

In figure 5, we give the residuals of energy, momentum and charge for the collision of the
two solitons. It can be observed from the longitudinal (left) graphs that the error of energy
conservation law is in the scale of 10−11 for scheme (C-C) because it is an energy-preserving
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Figure 5. Residuals of energy (left), momentum (mid) and charge (right) conservation law for
collision: (a) scheme M-M, (b) scheme M-C, (c) scheme T-C, (d) scheme T-T, (e) scheme C-C.
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scheme, while for schemes (M-M), (M-C) and (T-C) in the scale of 10−4, for scheme (T-T)
even in the scale of 10−1. And the errors change larger during collision than others, and exhibit
pretty performance with oscillation of little amplitude around some equilibrium state, and have
no evident amplification for a long time before and after collision for all the schemes. The
longitudinal (mid) graphs exhibit the corresponding errors of the momentum for collision of
the two solitons, and we can learn from them that schemes (M-C), (T-C) and (C-C) present the
similar performance: the errors change larger during collision, and exhibit pretty performance
with oscillation of little amplitude around some equilibrium state, and have no any evident
amplification for a long time after collision. But, as a whole, the errors are in the scale of
10−1, and much larger than in the case of solitary wave. Surprisingly, the results of schemes
(M-M) and (T-T) are much better than they are expected, which are in the scale of 10−10.
Now, turn our eyes to the right, we find that schemes (M-M), (M-C) and (C-C) preserve the
charge conservation law exactly, which are in the magnitude of 10−12. But schemes (T-C) and
(T-T) are in the scale of 10−4, and the errors change larger during collision, and exhibit pretty
performance with oscillation of little amplitude around some equilibrium state, and have no
any evident amplification for a long time after collision as other invariant quantities.

In all, though in the case of collision of solitons, all the five schemes remain stable for the
energy, charge and momentum conservation laws.

5. Conclusions

We present five difference schemes to simulate the CKGS equations, and investigate their
properties numerically, including the discrete energy, charge and momentum conservation
laws. The five difference schemes are all of order O(τ 2 + h2). Scheme (C-C) can preserve
both the discrete charge and energy conservation laws exactly, and schemes (M-M), (M-C)
preserve the discrete charge conservation law exactly, whereas none of them can preserve the
discrete momentum conservation law exactly. In sum, scheme (C-C) is superior to schemes
(M-M) and (M-C), and the latter two are exceed to schemes (T-C) and (T-T). But sometimes
schemes (M-M) and (T-T) can simulate the discrete momentum conservation law precisely.
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